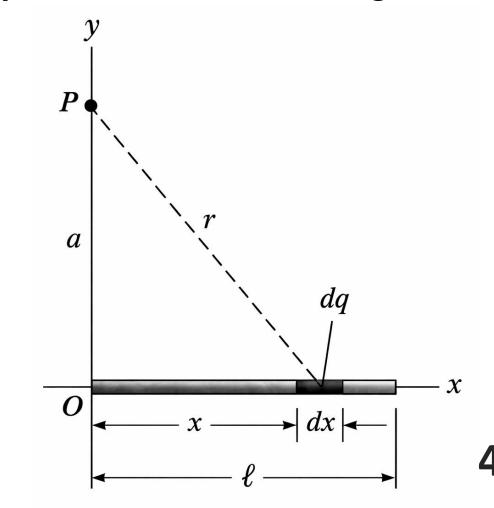


PHYCS102: General Physics II

Final Exam Revision

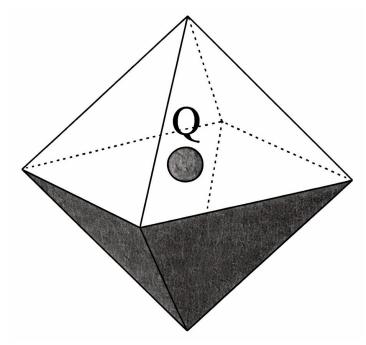
Prepared by Sayed Ali Madan

Outline


• Past exams questions

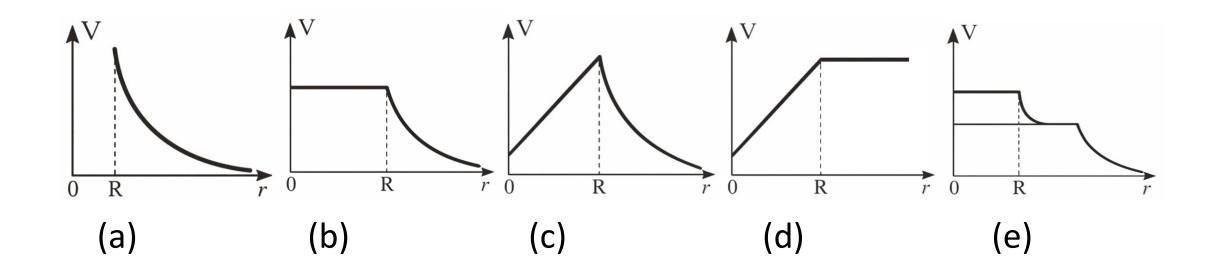
1- A charged particle (charge = +2e) is sent at high speed toward a gold nucleus (charge = +76e). What is the magnitude of the electrical force (in N) acting on the particle when it is $2.0 \times 10^{-14} \, m$ from the gold nucleus?

- (a) 91
- (b) 90.50
- (c) 89.86
- (d) 88.70
- (e) 87.55


2- A rod of length l located along the **x-axis** has a total charge Q and a uniform linear charge density λ . Which integral correctly describes the electric potential at point **P** located on the **y-axis**, as shown in the figure.

(a)
$$\int_{0}^{l} k \frac{\lambda x \, dx}{\sqrt{a^{2} + x^{2}}}$$

(b) $\int_{0}^{l} k \frac{\lambda \, dx}{\sqrt{a^{2} + x^{2}}}$
(c) $\int_{0}^{l} k \frac{\lambda \, dx}{a^{2} + x^{2}}$
(d) $\int_{0}^{l} k \frac{\lambda \, dx}{(a^{2} + x^{2})^{2}}$
(e) $\int_{0}^{l} k \frac{\lambda x \, dx}{a^{2} + x^{2}}$

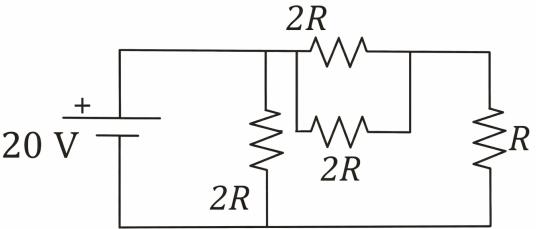


3- A double-pyramid has a square base of side a, and **8 faces** which are equilateral triangles. A charge Q is placed at the center of the base of the pyramid. What is the net flux of the electric field emerging from one of the triangular faces of the pyramid?

- (c) $\frac{1}{4\varepsilon_0}$ (d) $\frac{Q}{6\varepsilon_0}$

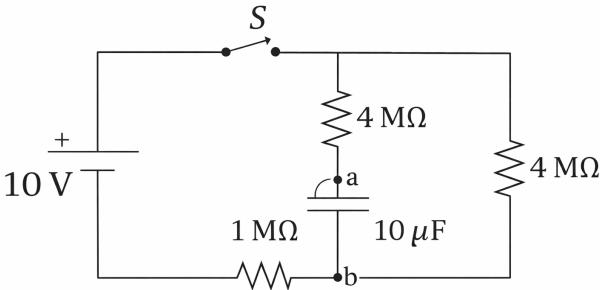
4- A conducting charged solid sphere of radius R has a total charge Q. The correct variation of electric potential V with the radial distance r is:

5- A copper wire has a cross-sectional area of $3.31 \times 10^{-6} m^2$. If it carries a constant current of 10 A, with an electron density of $8.46 \times 10^{28} \ electrons/m^3$, then what is the **drift speed of the electrons** in the wire (in $\mu m/s$)?


- (a) 223
- (b) 105
- (c) 79
- (d) 59
- (e) 38

6- According to the table shown, which metal is the **worst in terms of electric conductivity**?

Metal	Copper	Gold	Aluminum	Iron	Platinum
Resistivity (\times 10 ⁻⁸ $\Omega \cdot m$)	1.7	2.44	2.82	10	11
	(a)	(b)	(c)	(d)	(e)


7- Find the **total power (in** W) delivered by the battery in the following circuit, $R=16~\Omega$.

- (a) 40
- (b) 25
- (c) 22.5
- (d) 20
- (e) 16

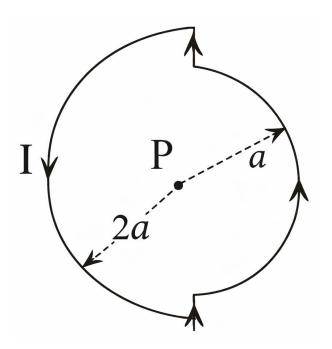
8- In the circuit shown, switch **S** has been closed for a long time. If the emf $\varepsilon = 10 V$, then the value of the energy stored in the capacitor (in μ *I*) is:

- (a) 320
- (b) 365.4
- (c) 387.2
- (d) 460.8
- (e) 540.8

9- A charged particle of charge +q moves in a circular path of radius r in a constant magnetic field of strength B. If the magnetic field strength is increased to 3B, the new radius of the circular path that this charge will take is:

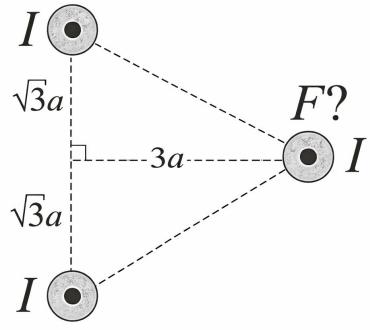
- (a) 2r
- (b) 3r
- (c) r/2
- (d) r/3
- (e) *r*

10- In the circuit shown, the net magnetic field at point P is:

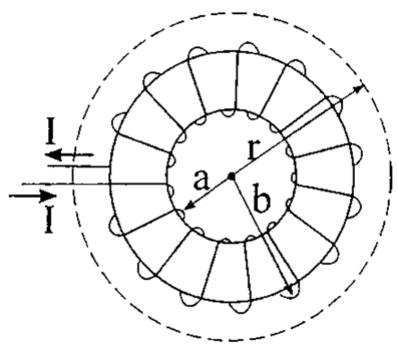

(a)
$$\frac{3\mu_0I}{8a}$$
 \odot

(b)
$$\frac{\mu_0 I}{4a} \otimes$$

(c)
$$\frac{\mu_0 I}{4a}$$
 \odot

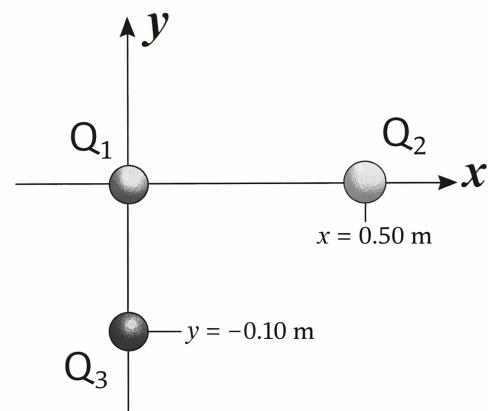

(d)
$$\frac{3\mu_0I}{8a}$$

(e)
$$\frac{\mu_0 I}{8a}$$
 \odot


11- Three identical long, parallel conductors each carry a current of $I=5\,A$. The figure shown is an end view of the conductors, with each current coming out of the page. Taking the length of the conductors $l=2\,m$ and $a=1.00\,cm$, determine the magnitude of the net force acting on the conductor at the right.

- (a) 5
- (b) 20
- (c) 32
- (d) 45
- (e) 80

12- A toroid has an inner radius a = 9 cm and an outer radius b = 11 cm, as shown in the figure. If the toroid consists of 100 turns and carries a current of 4 A, then the magnetic field (in μT) at the position r = 13 cm from its center is:

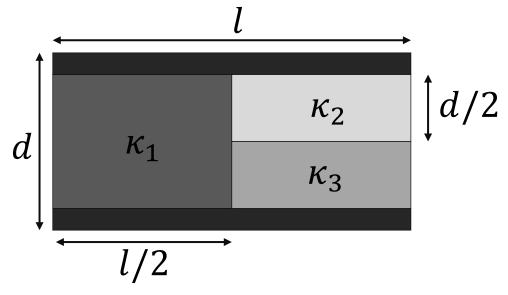

- (a) 400
- (b) 200
- (c) Zero
- (d) 600
- (e) None of the above

Problem 1:

Three electric charges, $Q_1 = 5 nC$, $Q_2 = 6 nC$, and $Q_3 = -3 nC$, are

arranged as shown in the figure.

Answer the following questions.


Q1: Find the electrostatic force vector on Q_3 ?

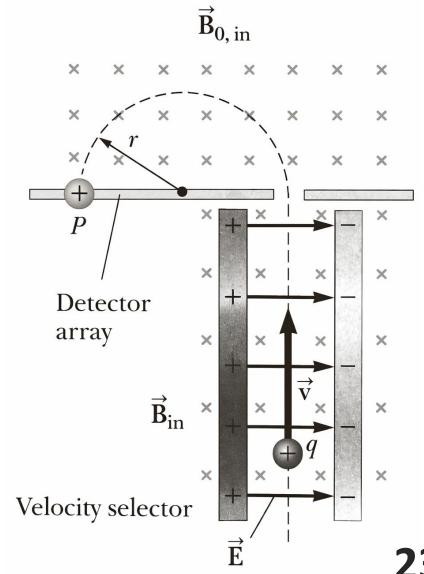
Q2: Calculate the electric energy of the system.

Q3: Calculate the electric potential at the position (0.5 m, -0.1 m).

Problem 2:

A parallel-plate capacitor is constructed by filling the space between two square plates with blocks of three dielectric materials, as shown in the figure. Using the values A=1.00 cm², d=4.00 mm, $\kappa_1=4.0$, $\kappa_2=6.0$, and $\kappa_3=2.0$, answer the following questions:

Q1: Find the capacitance of each capacitor after adding the dielectrics, as shown in the figure.


Q2: Calculate the equivalent capacitance of the constructed capacitor.

Q3: Assuming the constructed capacitor has a capacitance of $150 \, pF$, and a voltage of $20 \, V$ is applied across it, determine the maximum energy that can be stored.

Problem 3: (4 points)

Consider the mass spectrometer schematically in the figure. The magnitude of the electric field between the plates of the velocity selector is E = 2500 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of $B_{in} = B_{0.in} = 0.0350 T$.

Answer the following questions:

Q1: Find the optimal speed of the entering charged particle in the velocity selector chamber?

Q2: Determine the kinetic energy of the charged particle.

Q3: Calculate the radius r of the path for a singly charged ion having a mass $m = 2.18 \times 10^{-26} \ kg$ and exiting the chamber at a speed of $70 \ km/s$.

Q4: Find the ratio q/m of the particle?

By: Sayed Ali Madan