Multiple Choice Questions

- 01. An unknown element X reacts with bromine to form ionic compound XBr. If X^+ has 10 electrons, identify the element:
- a) Mg b) Be c) Li d) Na e) Al

02. How many molecules are present in 0.250 mL of propanol, $CH_3CH_2CH_2OH$? (Density = 0.803 g/mL, Molar mass = 60.11 g/mol) a) 6.33×10^{21} b) 2.01×10^{21} c) 8.04×10^{21} d) 1.32×10^{21} e) 4.02×10^{21}

- 03. What is the sum of the coefficients of the reactants after balancing the equation: $CH_4+O_2 \to CO_2+H_2O$
- a) 6 b) 7 c) 11 d) 13 e) 19

04. In one experiment, 4.00 g of $H_2(g)$ reacts with 4.00 g of $O_2(g)$. If 1.94 g of $H_2O(I)$ is formed, what is the percentage yield of the reaction?

- a) 97.1%
- b) 22.0%
- c) 35.0%
- d) 86.0%
- e) 43.1%

05. A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound?

- a) KNO
- b) KNO₂
- c) KNO₃
- d) KNO₄
- e) KN

06. Molality of an aqueous solution of a solute is 2.1 m. The mole fraction of the solute in the solution is:

- a) 0.036 k
- b) 0.070
- c) 0.084
- d) 0.096
- e) 0.051

07. At 25 °C, 0.0404 g O_2 dissolves in one litre of water at 1.00 atm. What is the solubility when the pressure is 359 mmHg?

- a) 3.42×10^{-4} mol/L
- b) $2.64 \times 10^{-4} \text{ mol/L}$
- c) $5.96 \times 10^{-4} \text{ mol/L}$
- d) $9.29 \times 10^{-4} \text{ mol/L}$
- e) $7.37 \times 10^{-4} \text{ mol/L}$

08. Arrange the following aqueous solutions in order of increasing boiling points:

- 1.10 m Mg(NO₃)₂, 1.10 m Ethanol, 1.10 m NaCl
- a) $Mg(NO_3)_2 < Ethanol < NaCl$
- b) Ethanol < NaCl < Mg(NO₃)₂
- c) Ethanol < Mg(NO₃)₂ < NaCl
- d) NaCl < Ethanol < Mg(NO₃)₂
- e) Mg(NO₃)₂ < NaCl < Ethanol

09. Which one of the following salts is insoluble in water?

- a) NH₄Cl b)
 - b) Ca(NO₃)₂
- c) BaCO₃
- d) Na₂S
- e) Zn(CH₃COO)₂

- 10. Calculate the freezing point of a 0.700 m aqueous solution of Al₂(SO₄₎₃ (Kf for water = 1.86 °C/m)
- a) -2.79 °C
- b) -4.65 °C
- c) -6.51 °C
- d) -1.86 °C
- e) -8.37 °C

- 11. A 0.500 g protein sample in 50.0 mL aqueous solution shows osmotic pressure of 8.92 mmHg at 27.0 °C. Estimate the molar mass of the protein.
- a) 1.51 × 10⁴ g/mol
- b) 2.89 × 10⁴ g/mol
- c) 2.10×10^4 g/mol
- d) 3.53×10^4 g/mol
- e) 2.26×10^4 g/mol

12. A sample of helium has a volume of 1.98×10^{-3} L at 0.998 atm and 31 °C. What is the volume at 0.753 atm and -25 °C?

- a) 2.53×10^{-3} L b) 2.79×10^{-3} L
- c) 2.30×10^{-3} L d) 3.50×10^{-3} L e) 2.12×10^{-3} L

- 13. In which series is the lower energy level n = 3 in hydrogen atom?
- a) Lyman b) Balmer c) Paschen
- d) Brackett e) None of the above

14. Which of the following sets of quantum numbers is not possible?

- a) $(1,0,0,+\frac{1}{2})$ b) $(1,0,1,-\frac{1}{2})$
- c) $(3,2,-2,+\frac{1}{2})$ d) $(3,2,1,-\frac{1}{2})$ e) $(4,2,0,+\frac{1}{2})$

15. An ion (X^{2+}) with the electron configuration [Ar] $3d^5$ is:

a) V b) Mn c) Co d) Cr e) Fe

16. Which of the following describes the energy for this process:

- $Li(g) \rightarrow Li^{+}(g) + e^{-}$
- a) Electron affinity b) Binding energy
- c) Ionization energy d) Electronegativity e) None of these

- 17. The correct Lewis structure for nitrogen trichloride (NCl₃) has:
- a) 3 N-Cl bonds and 6 lone pairs of electrons
- b) 1 N-Cl bond, 2 N-Cl bonds and 7 lone pairs
- c) 2 N-Cl bonds, 1 N-Cl bond and 8 lone pairs
- d) 3 N-Cl bonds and 10 lone pairs of electrons
- e) 3 N-Cl bonds and 9 lone pairs of electrons

True or False (T/F)

- 1. The boiling point of a 0.5 m glucose aqueous solution is lower than that of a 0.5 m sodium chloride solution. (T / F)
 - 2. O^{2-} , F^{-} , and Ne all are isoelectronic species. (T / F)
 - 3. The density of a gas is constant as long as its temperature remains constant. (T / F)
 - 4. Formal charge on nitrogen in NO_3^- is +1. (T / F)
 - 5. PCl_5 molecule does not obey the octet rule. (T/F)
- 6. Solutions of weak acids always have lower concentrations of H⁺ than solutions of strong acids. (T / F)

University of Bahrain, Department of Chemistry

General Chemistry I (Chemy 101)

Second Semester 2013-2014, Third Hour Examination

June 1st, 2014 Time: 70 min

Examiners: Profs. Al-Arab, Akhter, Drs. Saeed, Jameela, Ameera, Saad, Layla, Suad, Ali.

R = 0.0821 L·atm/(mol·K)	1 atm = 760 mmHg	$T(K) = t(^{\circ}C)+273.15$
$R_{\rm H} = 2.180 \times 10^{-18} \rm J$	$h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$	c = 2.998×10 ⁸ m/s

01. (1 mark)

Which of the following statements regarding the colligative properties are true?

- The vapor pressure of water over an aqueous solution of glucose is less than the vapor pressure of pure water.
- II. The boiling point of an aqueous solution of glucose is less than the boiling point of pure water.
- III. The freezing point of an aqueous solution of NaCl is less than the freezing point of pure water.
- IV. The osmotic pressure of 0.1M aqueous solution of NaCl is more than that of 0.1M aqueous solution of sugar, both at 25°C.
 - a) 1, III
- b) I, II, IV c) I, IV
- d) I, III, IV
- e) III, IV

Q2. (3 marks)

0.100 g of a compound is dissolved in enough water to make 125 mL solution. The solution has an osmotic pressure of 2.5 mmHg at 25°C. What is the molar mass of the compound? Show your work.

Q3. (2 marks)

Estimate the normal boiling point of 0.45 m aqueous solution of FeCl3. kb of water = 0.52°C/m. Show your work.

Q4. (2 marks)

A sample of air is originally at 35°C. If pressure and number of moles are kept constant, to what temperature (in °C) must the air be cooled to decrease its volume to 45% of its original value? Show your work.

Q5. (1 mark)

By what factor does the density of a gas changes if its pressure is tripled while its absolute temperature is doubled?

- a) 6
- b) 3/2
- c) 4
- d) 2/3
- e) 1

Q6. (1 mark)

Consider the reaction N_2O_5 (g) + $H_2O \rightarrow 2H^+$ (aq) + $2NO_3^-$ (aq).

How many moles of H⁺ are produced when 1.50 L of N₂O₅ at 25°C and 1.00 atm is bubbled into water?

- a) 0.147
- b) 0.0306
- c) 0.204
- d) 0.0510
- e) 0.123

Q7. (3 marks)

5.3 g of Ar, 0.30 moles of He, and 650 mL of Ne at 0.80 atm and 25°C were introduced in a 5.0 L flask at a total pressure of 1.5 atm. What is the partial pressure of Ar? Show your work.

Q8. (1 mark)

Calculate λ (in nm) for the emission of light from n = 6 in the Balmer series.

- a) 94.89
- b) 1282
- c) 1094
- d) 410.3
- e) 434.2

Q9. (1 mark)

What are the possible values of m_{ℓ} for the d sublevel?

a) 0,+1+,2,+3

b) 0,+1,+2

c) +1,0,-1

- d) +3,+2,+1,0,-1,-2,-3
- e) +2,+1,0,-1,-2

Q10. (1 mark)

What type of electron orbital is designated by n = 6 , ℓ = 3 , m_{ℓ} = 2 ?

- a) 6f
- b) 5f
- c) 6d
- d) 3p
- e) 3s

Q11. (1 mark)

Give the number of orbitals in a 4p sublevel.

- a) 2
- b) 5
- c) 4
- d) 7

11

e) 3

Q12. (1 mark)

How many electrons in an atom can have the following quantum number designation?

$$n = 3$$
, $\ell = 1$, $m_{\ell} = -1$, $m_{s} = +1/2$

- a) 1
- b) 2 c) 3
 - d) 4
- e) 6

Q13. (1 mark)

Which of the following set of quantum numbers (n , ℓ , m_ℓ , m_S) are incorrect?

- a) I, II, IV
- b) II, III, Vc) III, IV, V
- d) II, III
- e) I, IV

<i>Q1</i> . T	he name of ICl ₃ is		
	a) iodine chloride d) iodine trichloride	b) iodine(III) chloride e) iodine chlorine	c) iodide chloride
Q.2	The name of Co(ClO ₃) ₃ is	s:	
	a. Cobalt Chlorite	b. Cobalt (III) Chlorite	c. Cobalt (III) hypochlorite
1	d. Cobalt (III) Chloride	e. Cobalt (III) Chlorate	
Q.3	Consider the following re Determine the limiting remaining when 3 moles	$\begin{array}{c} 6 \; Li(s) + N_2(g) \rightarrow 2 \; Li \\ \text{reactant and the number} \end{array}$	₃ N(s) of moles of the excess reactant
	a. N _{2(g)} and 0.5 moles Li ₀	remaining b. Li _(i)	and 0.5 moles N _{2(g)} remaining
	c. $N_{2(g)}$ and 3.0 moles Li_0	remaining d. Li ₍₃₎	and 1.0 moles N _{2 (g)} remaining
	e. $\text{Li}_{(s)}$ and 2.5 moles N_2	g) remaining	
Q.4.	All the following compou	nds are soluble in water excep	t
	(a) Fe(NO ₃) ₃ (b)	Na ₂ SO ₄ (c) Ba(OH) ₂ (d) d) NiCl ₂ (e) Fe(OH) ₂
Q.5	The number of moles H ₂	SO ₄ that has 2.4 x 10 ²² atoms	of oxygen is
	a. 0.05 moles b. 1.2	3 moles c. 0.014 moles	d. 4.42 moles e. 0.01 moles
Q.6.	The density of ethanol (0 450 mL of this liquid?	C ₂ H ₅ OH) is 0.789 g/mL. How	v many carbons atoms are present in
	 a) 9.3 x 10²² 	b) 9.3 x 10 ²³	c) 9.3 x 10 ²⁴
	d) 7.9 x 10 ²⁰	e) 6.4 x 10 ¹⁷	
Q. 7.	Which of the following m	olecules or ions has the same	Lewis structure as N ₂ ?
	a) O ₂	b) CN	
	c) CO	d) Answ	vers a and c are correct
	e) Answers b and c are	e correct	' A.

Q.8.	A 1.00 gram sample of a compound containing the elements: C, H, O is burned completely and converted to 2.379 g CO ₂ and 1.216 g H ₂ O. What is its empirical (simplest) formula ?
	(a) C_2H_6O (b) C_2H_3O (c) C_3H_8O (d) $C_2H_2O_4$ (e) $C_4H_{10}O$
Q.9	The number of unpaired electrons in (Co3+, Co2+, Co4+) is :
	a (5,4,3) b. (3,4,5) c. (4,5,3) d. (4,3,5) e. (5,3,4)
Q.10	How many millilitres of 1.15 M Ca(OH) ₂ solution are needed to neutralize completely 25.0 ml of 0.800 M H_3PO_4 solution? $3Ca(OH)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6H_2O$
	a) 39.2 mL b) 26.1 c) 15.9 mL d) 58.8 mL e) 13.1 mL mL
Q.11	Which of the following is not isoelectronic with Ne?
	a) F b) O2- c) Na ⁺
	d) K* e) Mg ²⁺
Q.12	The sum of coefficients of reactants after balancing the equation
	ClO ₃ ⁻ + Cl ⁻ → Cl ₂ + ClO ₂ (acidic solution)
	a) 4 b) 5 c) 8 d) 9 e) 13
Q.13	How many grams of nitrogen gas must be added to a 6.0 L cylinder containing 6.65 gram of oxygen gas at 20°C to get a total pressure of 4.5 atm?
	a) 25.6 g b) 11.2 g c) 6.40 g d) 22.5 g e) 12.8 g
Q.14	At what temperature does 1 atm of N _{2(g)} has the same density as 1 atm of the He _(g) at 30°C?
	a) 425 K b) 1981 K c) 2086 K d) 2121 K e) 430 K
2.15	A line in the Balmer series occurs at 410.18 nm. Calculate n_{hi} for the transition associated with this line.
	a) 5 b) 4 c) 3 d) 6 e) 7

Q.	16 Which one of	the following set	of quantum	- iu S _mals	,
	a) (3, 0, 0), + ½)	b) (3, 1, -1, + 1/2		3, 2, 1, + 1/2)
	d) (3, 3, -		e) (3, 2, 3, + ½)	. 1	, 4, 1, 1 72)
Q.1	7 The formal ch	arge(s) on O atom	s in NO ₃ is/are		
	a) 0	b) +1 c)		0 and -1 e) +1 and ~1
Q.1	8 The electron of	configuration for C	u ⁺¹ is :		
	a [Ar]3d1				
	d. [Ar]3d ¹⁰		b. [Ar]4s ¹ 3d ⁹ e. [Ar]4s ² 3d ⁸	c. [Ar]4	s ² 3d ⁹
			. [/4]45 54		
Q.19	Calculate the p	ercentage by mar	ss of an aqueous sol	ution of Na ₂ CO ₃ wh	ose molarity is 4.8 M
	a) 20.5%	b) 41.0 %	6 c) 10.25%	d) 54.9%	e) 8.7 %
Q.20	Calculate the m	olality of an aque	ous solution of NaCl	with mole fraction of	f NaCl equal 0.12?
	a) 14.8 m			d) 26.14 m	
Q.21	The % by mass 1.35 g/ml)?	of NaOH in a slo	oution is 40 %. Wh	nat is its molarity (D	ensity of solution =
	a) 6.75 M	b) 13.50 M	c) 15.98 M	d) 19.72 M	e) 22.65 M
Q.22	At what tempe $(K_f (H_2O) = 1.86$	erature will a mi	ixture of 2.00 g o	f CaCl ₂ and 25.0 g	of water freeze ?
	a - 0.149°C	b 1.34°C	c 2.01°C	d - 4.02°C	e 8.04°C
2.23	A solution is pre of solution. The of the solute?	pard by dissolving osmotic pressure	5.00 g of unknown of the solution is 1.6	molecular solid in w. 51 atm at 25 °C. Wh	ater to make 1.00 L at is the molar mass
a.	6.37 g/mol	b. 228.0 g/mol	c.76.0 g/mol	d.102 g/mol	e. 152.0 g/mol
2.24	The oxidation nu	mber of P in PO ₄ 3-	is		

0.4. Place the following elements in order of increasing electronegativity.

(1.0 point)

Sr,	N	D	F
ы,	17,	.,.	

Lowest	Lower	Higher	Highest

Q.5. (1.0 point)

Choose four isoelectronic to K⁺ from the following,

1	1	
1	1	
1	1	
1	1	
1	1	
1	1	

0.6. (1.0 point) A ground-state of Fe³⁺ ion has __unpaired electrons and is _ (paramagnetic/diamagnetic)

Q.7. (1.0 point)

The correct orbital diagram for Cr3+ is

Q.8-Q.15, Multiple choice questions are worth one point each. Please circle one correct answer for the following questions. (I point each)

Q.8.

A mixture of 0.225 moles of CO, 0.350 moles of H2 and 0.640 moles of He has a total pressure of 2.95 atm. What is the partial pressure of H₂?

- a) 0.969 atm
- b) 1.554 atm
- c) 0.546 atm
- d) 0.649 atm
- e) 0.850 atm

Q.9.

A gas mixture consists of N₂, O₂, and Ne, where the mole fraction of N₂ is 0.55 and the mole fraction of Ne is 0.25. If the mixture is at STP in a 5.0 L container, how many molecules of O₂ are present?

a) 1.1×10^{23} molecules O_2

b) 8.1×10^{22} molecules O_2

c) 2.7×10^{22} molecules O_2

d) 5.4 × 10²² molecules O₂

e) 9.3×10^{24} molecules O_2

Q.10.

What volume of N₂O gas, collected over water, at a total pressure of 826 mm Hg and 25°C, can be produced from the decomposition of 2.6 g NH₄NO₃? (The vapour pressure of water at 25°C is 23.8 mm Hg)

$$NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(l)$$

a) 753 mL

b) 635 mL

c) 1332 mL

d) 936 mL

e) 1912 mL

Q.11.

A line in Lyman series occurs at a wavelength of 94.95 nm. What is the higher energy level (nhi) that is associated with this emission?

a) 3

b) 4

c) 5

d) 6

e) 7

Q.12.

Which of the following sets of quantum numbers is impossible?

a) n = 2, l = 1, $m_l = -1$, $m_s = -\frac{1}{2}$

b) n = 4, l = 2, $m_l = 0$ $m_s = \frac{1}{2}$

c) n = 3, l = 0, $m_l = 0$, $m_s = -\frac{1}{2}$

d) n = 1, l = 0, $m_l = 0$, $m_s = -\frac{1}{2}$

e) n = 3, l = 3, $m_l = -2$, $m_s = \frac{1}{2}$

Q.13.

What is the ground state electron configuration for Co2+?

- a) [Ar] 4s23d7
- b)[Ar] 4s13d5
- c)[Ar] 3d⁷
- d)[Ar] 4s13d10
- e)[Ar] 3d⁵

0.14.

Which of the following is a correct Lewis structure for oxygen gas?

- 0=0
- :O=O:
- d. (O—O).
- e. :O=O:

Q.15.

What is the total number of bonding and nonbonding electrons in the Lewis structure of sulfur trioxide SO3, respectively?

- a. 6 and 18 e-
- b. 8 and 16 e-
- c. 10 and 14 e⁻
- d. 4 and 20 e⁻
- e. 12 and 12 e-

0.4.	Which one	of the	following	pure	gases	has the	greatest	density	at	STP?
~	minute one	Or the	10110111115	Pare	5	men man	Secure	acing		

- a) H₂
- b) CClF₃
- c) CO₂
- d) C₂H₆
- e) CF₄

$$HCHO_2(l) \rightarrow H_2O(l) + CO(g)$$

If 3.85 L of carbon monoxide, CO, was collected over water at 25 °C and 689 mm Hg, how many grams of formic acid were consumed? (Vapour pressure of water at 25°C is 23.8 mm Hg)

- a) 3.65 g
- b) 5.43 g c) 6.35 g
- d) 7.75 g e) 9.62 g

$$2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$$

- a) 23.3 L
- b) 0.085 L
- c) 46.8 L
- d) 7.79 L
- e) 11.7 L

- a) 1.24 atm
- b) 1.89 atm
- c) 2.09 atm

- d) 2.89 atm
- e) 3.56 atm

Q.8.	Place the following regions of the electromagnetic spectrum in order from longest
	to shortest wavelenght.

- a) radio waves > microwaves > visible > ultraviolet > gamma ray
- b) gamma ray > microwaves > radio waves > visible > ultraviolet
- c) radio waves > ultraviolet > gamma ray > microwaves > visible
- d) microwaves > visible > ultraviolet > gamma ray > radio waves
- e) microwaves > radio waves > ultraviolet > visible > gamma ray

Q.9. A helium-neon laser emits light at 632.8 nm. What is the energy per one mole of **photons** from this laser?

- a) 1.890 × 10⁵ J/mole b) 3.139 × 10⁻¹⁹ J/mole c) 4.235 × 10⁵ J/mole

- d) 3.139 × 10⁵ J/mole
- e) 2.111×10^{-15} J/mole

- a) 3
- b) 4
- c) 5
- d) 6
- e) 7

- a) $(1.0,1,-\frac{1}{2})$ b) $(2,1,0,+\frac{1}{2})$ c) $(3,1,-1,-\frac{1}{2})$ d) $(4,3,-1,-\frac{1}{2})$ e) $(6,3,-3,+\frac{1}{2})$

Q.12. All the following statements are correct for p orbitals EXCEPT

- a) The shapes of p orbitals consist of two lobes along an axis (x,y, or z).
- b) There are three p orbitals available.
- c) All p orbitals have spherical shapes.
- d) The third quantum number, m, for p orbitals are, m = 1,0,-1.
- e) Only six electrons, as a maximum number, can be occupied in p orbitals.