

Lesson 1

PHYCS102

Chapter 22 | Electric Fields

22.3 Coulomb's Law

T. Sayed Ali Madan

balloom

* electrons moved from neir to balloom.

* smallest charge is electron charge

$$C = 1.6 \times 10^{-19}$$

 $C : Coulomb$

Outline

- Revision of vectors
- Coulomb's Law
- Examples

Outline

- Revision of vectors
- Coulomb's Law
- Examples

A Vector quantity has a magnitude and direction.

$$A_{\times} = \sqrt{5} \cos 26.6^{\circ}$$

$$A_x = 2.0$$
 $A_y = 1.0$
 $A_y = \sqrt{5} \sin 26.6$

$$A_{v} = A \sin \theta$$

x-component

$$A_x = A \cos \theta$$

Note: θ is taken counterclockwise from the +x direction

$$\theta = \tan^{-1}\left(\frac{1.0}{2.0}\right)^{\frac{2}{10}} = 26.6^{\circ}$$

$$A = \sqrt{2.0^2 + 1.0^2} = 2.2$$

$$= \sqrt{5}$$

How to calculate $\theta = \tan^{-1} \left(\frac{A_y}{A_y} \right)$ using the calculator:

Q1:
$$\theta = (calculator\ result) + 0$$

Q2:
$$\theta = (calculator result) + 180^{\circ}$$

Q3:
$$\theta = (calculator\ result) + 180^{\circ}$$

Q4:
$$\theta = 360^{\circ} + (calculator result)$$

-> You'll get O to be taken counterclockwise from the +x direction

Unit vector notation:

Resultant of vectors:

Find the resultant (net/sum) of the following two vectors:
$$\overrightarrow{A_1} = -4\hat{\imath} + 3\hat{\jmath}, \qquad \overrightarrow{A_2} = -\hat{\imath} + \hat{\jmath}$$

$$\overrightarrow{A_2} = -\hat{\imath} + \hat{\jmath}$$

$$\overrightarrow{A_2} = (-4\hat{\imath} + 3\hat{\jmath}) + (-\hat{\imath} + 4\hat{\jmath})$$

$$= -5\hat{\imath} + 4\hat{\jmath}$$

Magnitude and direction of the resultant:

$$A = (A_{x}^{2} + A_{y}^{2}) = (-5)^{2} + (4)^{2} = 6.4, \quad \Theta = \tan^{-1}(\frac{A_{y}}{A_{x}})$$

$$= \tan^{-1}(\frac{4}{-5}) = -38.7 + 126$$
By: Sayed Ali Madan

Find the resultant of the following two vectors:

d the resultant of the following two vectors:

$$A_{x} = A_{x} + A_{2,x} = +5\cos 36.9^{\circ} - \sqrt{2}\cos 45^{\circ}$$

$$A_{x} = A_{x} + A_{2,x} = +5\cos 36.9^{\circ} - \sqrt{2}\cos 45^{\circ}$$

$$A_{z} = A_{z} + A_{z} + A_{z} = -3$$

$$A_{z} = \sqrt{2}$$

$$A_{z} = \sqrt{2}$$

$$A_{z} = A_{z} + A_{z} + A_{z} = -5\sin 36.9 + \sqrt{2}\sin 45^{\circ}$$

$$= -2$$

$$A_{z} = \sqrt{2}$$

$$A_{z} = \sqrt{2}$$

$$A_{z} = A_{z} + A_{z} = -5\sin 36.9 + \sqrt{2}\sin 45^{\circ}$$

$$= -2$$

$$A_{z} = \sqrt{2}$$

$$A_{z} = A_{z} + A_{z} = -5\sin 36.9 + \sqrt{2}\sin 45^{\circ}$$

$$= -2$$

$$A_{z} = -2\hat{1}$$

$$A_{z} = -2\hat{1}$$

$$A_{z} = -2\hat{1}$$

$$A_{z} = -2\hat{1}$$
If we need magnitude and direction:

we need magnitude and direction:

$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{(3)^2 + (-2)^2} = \sqrt{-13}$$
By: Sayed Ali Madan $O = \tan^{-1}\left(\frac{A_y}{A_x}\right) = \tan^{-1}\left(\frac{-2}{3}\right) = -33.7 \frac{10}{4360}$

Resultant of n vectors:

$$\overrightarrow{A} = \overrightarrow{A_1} + \overrightarrow{A_2} + \cdots + \overrightarrow{A_n}$$

Outline

- Revision of vectors
- Coulomb's Law
- Examples

Electric force between two point charges:

Direction of electric force:

- Similar repels
- Different attracts

Electric forces follow Newton's Third Law:

$$\vec{F}_{12} = -\vec{F}_{21}$$

Magnitude of electric force between two charges:

 F_e : electric force

$$F_e \propto |q_1|$$

 q_1 : charge 1

$$F_e \propto |q_2|$$

 q_2 : charge 2

$$F_e \propto \frac{1}{r^2}$$

r: distance between the two charges

Coulomb's Law:

$$F_e = k \frac{|q_1||q_2|}{r^2}$$
For point charges
$$k = 8.987 \times 10^9 \, N \cdot m^2 / C^2$$

$$k = 8.987 \times 10^9 \, N \cdot m^2 / C$$

$$k = \frac{1}{4\pi\epsilon_0}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{2}{\sqrt{N \cdot m^2}}$$

E: Electric force

 q_1 : Charge 1

 q_2 : Charge 2

r: Distance between the two charges

> k: Coulomb constant

 ϵ_0 : Permittivity of free space

Recall: Rule of thumb:

- Similar repels
- Different attracts

16

If there are more than two charges, then the electric force between each pair of them is given by Coulomb's Law:

$$F_{23} = k \frac{|q_2||q_3|}{r^2}$$

The net/resultant force exerted on a charge is give by the vector sum of all forces by other charges:

$$\vec{F}_1 = \vec{F}_{21} + \vec{F}_{31} + \vec{F}_{41}$$

Section 22.3: Outline

- Revision of vectors
- Coulomb's Law
- Examples

Example 1:

Two charges

Consider two **positive** point charges as shown in the figure, where $q_1 = 2\mu C$, $q_2 = 3\mu C$ and $\alpha = 0.5m$. Find the magnitude of the electric force on q_1 by q_2 . Is the force between them attractive or repulsive? What is F_{12} ?

$$F_{21} = \frac{k |2_1| |2_2|}{r^2}$$

$$F_{21} = (8.988 \times 10^9)(2 \times 10^{-6})(3 \times 10^{-6}) = 0.22N$$

19

Example 1:

Two charges

In the same previous configuration, what will happen if:

- (a) q_1 increased by double
- (b) a is decreased by half

(a)
$$|911 \rightarrow 2|911$$
 $F \propto |911$

$$F_{\text{new}} = 2F_{21} = 2(0.22) = 0.44N$$

(b)
$$r \rightarrow \frac{1}{2}r$$
 $F \propto \frac{1}{2}$

$$F_{\text{new}} = \frac{1}{(\frac{1}{2})^2} F_{21} = 4(0.22) = 0.88N$$

Example 2: The Hydrogen Atom

The **electron** and **proton** of a hydrogen atom are separated by a distance of $\mathbf{a} = \mathbf{5}.3 \times \mathbf{10}^{-11} m$. Find the magnitude of the electric force between the two particles. Is the force between them attractive or repulsive?

	h 19,11921	
	(8.988×10)9 (1.6×10) (1.6×10) (5.3×10))2	
	(8.988×10) (1.6×10)2	
-	(5.3 x10)	

Particle	Charge (C)	Mass (kg)
Electron (e)	-1.60×10^{-19}	9.11×10^{-31}
Proton (p)	1.60×10^{-19}	1.67×10^{-27}

Example 3:

Three charges

Consider three point charges located at the corners of a q_2 right triangle, where $q_1=q_3=5.00\mu C$, $q_2=-2.00\mu C$ and $a=0.100\ m$. Find the resultant force exerted on q_3 .

1) magnitudes

$$\overline{f_3} = \overline{f_3} + \overline{f_2}$$

$$direction$$

$$\mu = 10$$

$$F_{13} = \frac{\text{kPaPe_3}}{r^2} = \frac{(8.988 \times 10^9)(5 \times 15^6)(5 \times 10^{-6})}{(\sqrt{2} \times 20.4)^2} = 11.2 \text{ N}$$

$$F_{23} = \frac{1921931}{r^2} = \frac{(8.988 \times 10^3)(2\times10^6)(5\times10^6)}{8988 \times 10^3(2\times10^6)(5\times10^6)} = 8.999 N$$
By: Sayed Ali Madan

$$F_{13/x} = F_{13} \cos 0 = 11.2 \cos 45$$

 $F_{13/y} = F_{13} \sin 0 = 11.2 \sin 45$

$$F_{3/x} = F_{13/x} + F_{23/x} = 11.2\cos 45^{\circ} - 9.99 = -1.04N$$

$$\overrightarrow{F_3} = \left(-1.04 \, \hat{1} + 7.94 \, \hat{1} \right) N$$
By: Sayed Ali Madan

If we need magnetud & direction:

$$F_3 = \sqrt{F_x^2 + F_y^2} = \sqrt{(-1.04)^2 + (7.94)^2} = 8N$$

$$0 = \tan^{1}(\frac{F_{y}}{F_{x}}) = -82.5 + 180 = 97.5^{\circ}$$

Example 3:

Three charges

Three point charges lie along the x axis. The positive charge $q_1 = 15.0 \, mC$ is at $x = 2.00 \, m$, the positive charge $q_2 =$ $6.00 \ mC$ is at the origin, and the net force acting on q_3 is zero. What is the x coordinate of q_3 ?

$$F_{3} = 0 = F_{3} + F_{23}$$

$$F_{13} = F_{23}$$

$$\sqrt{6mc}(2-x) = \pm \sqrt{15mc} x$$

$$\Rightarrow \chi = \frac{2\sqrt{6}}{\sqrt{6}} = 0$$

