1.4 Exponential Functions

The function $f(x) = 2^x$ is called an *exponential function* because the variable, x, is the exponent.

In general, an exponential function is a function of the form

$$f(x) = b^x$$

where *b* is a positive constant.

Laws of Exponents If *a* and *b* are positive numbers and *x* and *y* are any real numbers, then

1.
$$b^{x+y} = b^x b^y$$
 2. $b^{x-y} = \frac{b^x}{b^y}$ **3.** $(b^x)^y = b^{xy}$ **4.** $(ab)^x = a^x b^x$

igoplus www.olearninga.com

O olearninga

() 66939059

Solving exponential equations:

a)
$$3^{x+2} = q^{2x-3}$$

b)
$$8^{4x-12} = 16^{5x-3}$$

2

Rwww.olearninga.com

d) $e^{\chi} = 5$

e)
$$2^{2}$$
, 4^{2} = 8

3

Rwww.olearninga.com

Exponential Function graphing:

$$J = \pm N^{\chi \pm b} \pm q$$

+N : Draw the graph above the horizontal asymptote.

- -N : Draw the graph below the horizontal asymptote.
- +b : Move the graph to the left.
- -b : Move the graph to the right.
- +a : Graph moves up.
- -a : Graph moves down.

Examples for graphing:

a)
$$J = 3^{x+1} - 2$$

Rwww.olearninga.com

6

Rwww.olearninga.com

1.5 Inverse Functions and Logarithms

1 Definition A function f is called a **one-to-one function** if it never takes on the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

EXAMPLE 1 Is the function $f(x) = x^3$ one-to-one?

EXAMPLE 2 Is the function $g(x) = x^2$ one-to-one?

5 How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write y = f(x).

STEP 2 Solve this equation for *x* in terms of *y* (if possible).

STEP 3 To express f^{-1} as a function of *x*, interchange *x* and *y*. The resulting equation is $y = f^{-1}(x)$.

Find the inverse of the following:

a)
$$f(x) = 3X + 5$$

b)
$$f(x) = \frac{3x - 7}{4x + 3}$$

c)
$$f(x) = \sqrt{2x-6}$$

domain of f^{-1} = range of frange of f^{-1} = domain of f

Rwww.olearninga.com

(i) olearninga

$$x \longrightarrow f \longrightarrow f(x) \longrightarrow f^{-1} \longrightarrow x$$

$$f^{-1}(f(x)) = x$$
 for every $x \text{ in } A$
 $f(f^{-1}(x)) = x$ for every $x \text{ in } B$

d)
$$f(x) = \sqrt[3]{2x-7}$$

Rwww.olearninga.com

How does the inverse look like?

Rwww.olearninga.com

