ITCS255 Test 1 Revision

- 1. Please choose the best correct answer for each of the following questions.
 - 1. Suppose thatf(x) is an upper bound function ong(x). Which of the following iscorrect?
 - a. $g(x) \in O(f(x))$
 - b. $g(x) \in \Omega(f(x))$
 - c. $g(x) \in \Theta(f(x))$
 - 2. Suppose a and b are integers and a|b. Which of the following is correct?
 - a. a|(b-5)
 - b. a|5b
 - c. b|a
 - d. gcd(a, b) = 1
 - 3. The linear congruence a x≡b(mod m) has a unique solution if
 - a. gcd(a, b) = 1
 - b. gcd(b, m) = 1
 - c. gcd(a, m) = 1
 - d. gcd(a, m)|b
 - 4. The linear combination of gcd(17,13) is
 - a. $17 \times (-2) + 13 \times 5$
 - b. $17 \times (-1) + 13 \times 5$
 - c. $17 \times (-3) + 13 \times 4$
 - d. $17 \times (-2) + 13 \times 4$

- 5. Which of the following is true?
 - a. $15\equiv 4 \pmod{7}$
 - b. 15≡2 (mod 3)
 - c. 21≡3 (mod 6)
 - d. 17≡4 (mod 6
- 6. For the functions, $n^{1000000}$ and 2^n , what is the asymptotic relationship between these func-tions?
 - a. $n^{1000000}$ is $O(2^n)$
 - b. $n^{1000000}$ is $\Omega(2^n)$
 - c. $n^{1000000}$ is $\Theta(2^n)$
- 7. Given that 8≡3 (mod 5) and 9≡4 (mod 5), which of the following is true?
 - a. $8^9 \equiv 3^4 \pmod{5}$
 - b. $9/8 \equiv 4/3 \pmod{5}$
 - c. $8 + 9 \equiv 3 + 4 \pmod{5}$
 - d. $8 \equiv 4 \pmod{5}$ and $9 \equiv 3 \pmod{5}$
- 2. Use Arithmetic Modularoperations to find 15⁵⁶³⁰ (mod 14)

2

3. Let n and m be integers. Prove that if n | m, then n | $(4n - 5m)^2$

4. Use the Basic Definition of big-Oto prove that $n + log_2(n+1) \in O(n)$. Apply the Ad-hoc calculations method.

5. Use infinite limits to prove that $\frac{4n^3+2}{n^2} \in \Theta(n)$

3

- 6. Consider the linear congruence $55x \equiv 1570 \pmod{22570}$
 - a. How many solutions does it have? Simplify it so that it has a unique solution

b. Find the unique solution to the simplified linear congruence you found in part(a). Show your steps.

7. Let $f(n) = n^2 - 4n + 1$. Use the basic definition to prove that $f(n) \in O(n^2)$.

8. If $k \in N$, prove that gcd(3k+2,5k+3) = 1.

9. Suppose $a+b \equiv 4 \pmod{5}$ and $3a+b \equiv 12 \pmod{5}$. Find the value of a

10. Solve the linear congruence 19x≡1 (mod 77)

11. Give a big-Oestimate forf(n) = $(n \lg n + n^2)(n^3 + 2)$

12. UseForward Chainingto solve the following recurrence relation.

$$a_0 = 0$$
, $a_0 = a_{n-1} + 3n$, $n \ge 1$

13.Use Back Substitution method to solve the recurrence relation

$$a_1$$
= 3, a_n = 7 a_{n-1} + 6, $n \ge 2$