
itcs214.olearninga.com

(1) Inheritance
(2) Composition
(3) Abstract classes
(4) Interfaces

Last Updated : 24/09/2022

2

Before we begin
(Review of classes & methods)

Syntax of declaration a class

public class className
{
 // Data fields declarations (member variables)

 // constructors

 // methods
}

Note that:

•	 A class is declared by use of class Keyword.

•	 The class body is enclosed between Curly braces { }.

•	 The class can have only two access modifiers.

- public: class is visible to all classes everywhere.

- default (no modifier): it is visible only within its own package.

•	 The data or variables defined within a class are called instance variables.

•	 The methods and variables defined within a class are called member of the class.

Data types in Java:

Data types are divided into two groups:

•	 Primitive data types:

There are 8 primitive data types such as byte, short, int, long, float, double, char and boolean.

•	 Non-primitive data types (object data types):

such as Strings and Arrays.

class
body

3

All of Java primitive types with amount of computer memory they use (size):
Type Name Kind of value Size Examples

byte Integer 1 byte byte x = 3;

short Integer 2 bytes short x = 3;

int Integer 4 bytes int x = 3;

long Integer 8 bytes long x =3;

float Floating Point 4 bytes float x =3.5;

double Floating Point 8 bytes double x = 3.5;

char Single Character 2 bytes char x =’O’;

boolean 1 bit boolean x= false;

Remember that: some of Escape Characters using with Strings in java
\”
\’
\\
\n
\t

double quote
Single quote
Backslash
New line. Go to the beginning of the next line.
Tab. Add whitespace

4

Declaration of instance variables:

•	 Instance variables are declared in a class, but outside a method, Constructor or any block.

•	 An instance Variable Can be declared with these Access modifiers:

- default (no modifier): accessible only by classes in the same package.

- public: visible to any class, whether these classes are in the same packages or in another

package.

- private: The member can only be accessed in its own class.

- protected: The member can be accessed within its only own package.

Examples of declaration a variable

long cprNum; //without access modifier

public long cprNum; //with public access modifier

private long cprNum; //with private access modifier

protected long cprNum; //with protected access modifier

Static variables (Class variables)

•	 Static variables are declared with the static keyword in a clss (outside a method).

•	 Static variables are shared by all objects of a class.

•	 Static variables that are not constants should be private.

•	 Can be accessed by calling with the class name (doesn’t need any object).

className.variableName;

•	 Variables declared static final are considered constant value (cannot be change).

public static final int WEEKDAYS = 7;

5

•	 We can have a static variables that can change in value, they are declared like instance
variables but with the keyword static.

private static int numberOfVacations;

•	 Both static variables and instance variables are sometimes called fields or data member.

Remember: Java has three kinds of variables

•	 Instance variables

•	 Static variables

•	 Local variables

Advantages of static variable:
It makes your program memory efficient (It saves memory)

Declaration of methods:

•	 A method is a block of statements that has a name and can be executed by calling (invoking)

it.

•	 Every program must have at least one method, and every program must have a methed named

main, which is the method first invoked when the program is run.

•	 All methods -including the main- must begin with a method declaration.

Syntax of declaration a method

public ReturnType methodName(parameter(s))
{

 // body of the method

}

•	 Variables in a method are called Local variables.

•	 Local variables having the same name and declared in different methods are different vari-

ables.

6

 Static methods:
 static methods are the methods in java that can be called without creating an object of class.

ClassName.methodName();

Instance method (non static) & static method

instance
(variables & methods)

static
(variables & methods)

instance method can access directly can access directly

static method can’t access directly
(must use reference to

object)
can access directly

7

(1)
Inheritance

The derived class inherits the attributes and methods from the base class.

IS-A relation is called inheritance.

Syntax:

public class SuperclassName
{
 // attributes and methods
}

public class SubclassName extends SuperclassName
{
 // attributes and methods
}

public class Test
{
 public static void main (String[]args)
 {
 // define objects
 }
}

Person

Student

Base class
Parent class
Super class				

		 IS-A

Derive class
Child class
Sub class

8

Example (1):
Write a Super class called Vehicle and a child class called car as showing in the table below, and then
create a main class called Test to check all the methods of both classes.

Class Attributes Methods

Vehicle
(Super class)

•	 type (String)
•	 color (String)
•	 speed (double)

•	 setType
•	 gettype
•	 setColor
•	 getColor
•	 setSpeed
•	 getSpeed
•	 print

Car
(sub class)

•	 engineCC(int)
•	 tirePressure(int)

•	 print

Class Vehicle

public class Vehicle
{
 String type;
 String color;
 double speed;

 public void setType(String s) {
 type = s;
 }

 public void SetColor(String c) {
 color = c;
 }

 public void SetSpeed(double sp) {
 speed = sp;
 }

 public String getType() {
 return type;
 }

 public String getcolor() {
 return color;}

9

 public double getsSpeed() {
 return speed;}

 public void print() {
 System.out.println(“Type = “ + type + “\nColor = “ + color + “\
nSpeed = “ + speed);
 }
} // end of class Vehicle

Class Car

public class Car extends Vehicle
{
 int engineCC;
 int tirePressure;

 public void print()
 {
 super.print();
 System.out.println (“Engine CC = “ + engineCC +
“\nTire Pressure = “ + tirePressure);
 }

} // end of Car class

main Class

Output
class Test {
 public static void main (String [] args)
 {
 Car honda = new Car ();
 honda.setType(“pilot”);
 honda.SetColor(“Blue”);
 honda.SetSpeed (250);
 honda.engineCC = 3471;
 honda.tirePressure = 44;
 honda.print();
 }
} // end of main class

Type = pilot
Color = Blue
Speed = 250.0
Engine CC = 3471
Tire Pressure = 44

10

Example (2):
(A) write a super class called Person have the following data members (Private):
name(string), cpr(1ong)

and the following methods:
•	 Default Constructor (without parameters).
•	 Constructor with two parameters.
•	 Set and get metheds for name and cpr.
•	 tostring method to return String equivalent of all attributes.

Class Person

public class Person
{
 private String name;	
 private long cpr;

 //default Constructor(without parameter)
 public Person ()
 {
 this (“unknown” , 0) ;
 }

 // Constructor with Parameter
 public Person(String name, long cpr) {
 this.name = name;
 this.cpr = cpr;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setCpr(long cpr) {
 this.cpr = cpr;
 }

 public long getCpr() {
 return cpr;
 }

11

	 public String toString () {
 return (“\t\tName : “ + name + “\t\tCPR : “ + cpr);
 }

} //end of class Person

(B) Write a class Student that inherits the properties of class Person.This new class will have
the following additional data members (private): idNum(String), major (String) and gpa (double)

and the following methods:
 • Default Constructor (without Parameters)
 • Constructor with 5 Parameters (including that of class Person)
 • Set and get metheds for idNum, major and gpa.
 • tostring methed to return String equivalent of all attributes .

Class Student

public class Student extends Person
{
 private String idNum;
 private String major;
 private double gpa;

//default Constructor
 public Student () {
 this (“Unknown”, 0 , “ “ ,” ” , 0.0);
	 }

//Constructor with parameters
 public Student(String name, long cpr, String idNum, String major, dou-
ble gpa){
 super(name, cpr);
 this.idNum = idNum;
 this.major = major;
 this.gpa = gpa;}

 public String getIdNum() {
 return idNum;}

 public void setIdNum(String idNum) {
 this.idNum = idNum;}

12

 public String getMajor() {
 return major;}

 public void setMajor(String major) {
 this.major = major;}

 public double getGpa() {
 return gpa;}

 public void setGpa(double gpa) {
 this.gpa = gpa;}

 public String toString () {
 return (super.toString()+ “\t\tIDNumber : “ + idNum +
“\t\tMajor : “+ major + “\t\tGPA : “+ gpa);
 }

}// end of class student

(C) Write a class Test having only main method. In the main method declare two objects p1 and
p2 of type person. create an object of type Person having some suitable values of attributes and
assign it to variable p1 .

Also create another object of type Student with suitable valves of its attributes and assign it to p2
then Print attributes of p1 and p2 by Calling toString method.

main Class

public class Test
{
 public static void main (String[] args)
 {
 Person p1,p2;
 p1 = new Person(“Sara”, 996677818);
 p2 = new Student(“Hasan”, 010057112, “20193050”, “CE”, 3.7);
 System.out.println(“Person Information :\n” + p1.toString());
 System.out.println();
 System.out.println(“Student Information : \n “ + p2.toString());
 }
} //end of class Test

13

Output
Person Information :
Name : Sara		 CPR : 996677818

Student Information :
Name : Hasan	 CPR : 2121290	 IDNumber : 20193050	 Major : CE	 GPA : 3.7

Questions from previous exams

Question (1):
Assume that class Item has following two private data fields:
private String name; private int code;
and following constructor:
public Item(String n, int c) { name = n; code = c; }
Now, we want to write a class called Electronicltem that inherits the properties of class Item as
follows having only one data field:
	 public class Electronicltem extends Item {
 	 private double price;
The constructor of class Electronicltem can be written as follows:
(a) public Electronicltem(String n, int c, double p)
 { this(n, c); price = p; }

(b) public Electronicltem(String n, int c, double p)
 { super(n,c); price = p; }

(c) public Electronicltem (String n, int c, double p)
 { Item.super(n, c); price = p; }

(d) public Electronicltem (String n, int c, double p)
 { Item.name = n; Item.code = c; price = p; }

14

Question (2):
Assume that class Item has following two private data fields:
private String name; private int code;
and the following method in addition to other methods:
public String toString() { return name + code; }
Now, we want to write a class called StoreItem that inherits the properties of class Item as
follows, having only one data field:
 public class StoreItem extends Item {
 private double price;
We want to include a method toString in class StoreItem to create a String
representation of the object, including all attributes, It can be written as follows:
(a) public String toString() { return Item.toString() + price; }

(b) public String toString() { return super.toString() + price; }

(c) public String toString() { return name + code + price; }

(d) Cannot include toString() method in class StoreItem as there is already a toString() method
in class Item.

Exercise:

Consider the following class definition:

public class Person
{
 private String name;
 private long cprNum;
 public Person(){
 this(“Unknown”, 0);
 }
 public Person(String pName, long code){
 setName(pName);
 setCprNum(code);
 }
 public void setName(String pName){
 name = pName;
 }
 public boolean setCprNum(long code){
 if (code > 0 && code < 1000000000){
 cprNum = code;
 return true;
 }

15

 else{
 System.out.println(“Invalid CPR, initializing it to 0”);
 cprNum = 0;
 return false;
 }
 }
 public String getName(){
 return name;
 }
 public long getCprNum(){
 return cprNum;
 }
 public String toString(){
 return(“Name: “ + name + “CPR: “ + cprNum);
 }
} // end of class Person

(A) Write a class called Employee, which inherits the properties of class Person. This new
class has the following additional data fields (private): position (String), salary (double)
Methods:
• default constructor (without parameters).
• constructor with 4 parameters: name, cpr, position and salary.
• set and get methods for both data members.
• toString method to return String equivalent of all attributes (including that of Person).

(B) Write a class Test having only main method. In main method declare two objects p1 and p2
of type Person. Create an object of type Person having some suitable values of attributes and
assign it to variable p1. Also create another object of type Employee with suitable values of its
attributes and assign it to p2. Now, print attributes of p1 and p2 by calling toString methods.

16

(2)
Composition

The Composition is a way to design or implement the part-of relationship. In Composition we
use an instance variable that refers to another object.

We can say it is a technique through which we can describe the reference between two or more
classes. And for that, we use the instance variable, which should be created before it is used.

Example (1):

(A) Write a class called Memory having the following members:
Data members (private):
• type of type String,
• size of type int,
• speed of type int.
	
Methods (public):
• set methods for all three data members,
• print method to print all attributes.

public class Memory
{
 private String type;
 private int size;
 private int speed;

 //set methods
 public void setType(String t) {type=t; }
 public void setSize(int s) {size = s ;}
 public void setSpeed(int s) { speed = s ; }

 public void print () {
 System.out.println (“The memory Specifications:”) ;
 System.out.println (“Type : “ +type+”\nSize : “ + size +”\nSpeed : “
+ speed);
 }

} //end of class Memory

17

(B) Write a class called Computer having the following members:
Data members (private):
• processor of type String.
• mem of type Memory.
	

Methods (public):
• setComputer to set values for the processor and mem.
• print method to print all attributes (including of class Memory).

public class Computer
{
 private String processor;
 private Memory mem; //Composition

 public void setComputer (String p, String t, int s, int sp) {
 processor = p ;
 mem = new Memory() ;
 mem.setType (t);
 mem.setSize (s);
 mem.setSpeed (sp);
 }

 public void print()
 {
 System.out.println (“processor :” + processor) ;
 mem.print() ;
 }
} //end of class Computer

(C) Write a Java application called ComputerTest having only main method to test your
program. Create an object pc of type Computer having following values:
processor = Intel , type = DDR4, size = 8, speed = 1333

Output
public class ComputerTest
{
 public static void main (String [] args)
{
 Computer pc = new Computer();
 pc.setComputer(“Intel”, “DDR4”, 8, 1333);
 pc.print();

 }
} // end of class ComputerTest

processor :Intel
The memory Specifications:
Type : DDR4
Size : 8
Speed : 1333

18

Example (2):

Consider the following class definition:
public class AddressType
{
 private int buildingNum; 	//Building number
 private int roadNum; 	 // Road number
 private int blockNum; 	 // Block number
 private String area;

// constructor
	 public AddressType(int bu, int ro, int bl, String ar){
 buildingNum = bu;
 roadNum = ro;
 blockNum = bl;
 area = ar;}

 public void setAddress(int bu, int ro, int bl, String ar)
 {
 buildingNum = bu;
 roadNum = ro;
 blockNum = bl;
 area = ar;
 }

 public int getBuildingNum() { return buildingNum; }
 public int getRoadNum() { return roadNum; }
 public int getBlockNum() { return blockNum; }
 public String getArea() { return area; }

 public void print()
 {
 System.out.println(“Building Number = “ + buildingNum +
 “Road Number = “ + roadNum + “Block Number = “ + blockNum +
 “Area = “ + area);
 }

} // end of class AddressType

Write a class called Building, having the following members:
Data members (private):
• address of type AddressType,
• floorArea of type float,
• numOfFloors of type int.
	

19

Methods (public):
• constructor with 6 parameters.
• set and get methods for all three data members,
• print method to print all attributes (including address),

public class Building {
 private AddressType address;
 private float floorArea;
 private int numOfFloors;

 public Building(int bu,int ro,int bl,String ar, float floorArea, int nu-
mOfFloors) {
 address = new AddressType(bu,ro,bl,ar);
 this.floorArea = floorArea;
 this.numOfFloors = numOfFloors;
 }

 public AddressType getAddress() {
 return address;
 }

 public void setAddress(AddressType address) {
 this.address = address;
 }

 public float getFloorArea() {
 return floorArea;
 }

 public void setFloorArea(float floorArea) {
 this.floorArea = floorArea;
 }

 public int getNumOfFloors() {
 return numOfFloors;
 }

 public void setNumOfFloors(int numOfFloors) {
 this.numOfFloors = numOfFloors;
 }

 public void print (){
 address.print();
 System.out.println(“Floor Area: “ + floorArea);
 System.out.println(“Num Of Floors “ + numOfFloors);
 }

}//end of class Building

20

Questions from previous exams

Question (1):
Assume that class Person has following two private data fields:
private String name; private int cpr;

and following constructor:
public Person(String n, int c) { name = n; cpr = c; }
Now, we want to write a class called Student having three data fields:
public class Student {
 private Person person; private int id; private int major;

The constructor of class Student can be written as follows:
(a)	 public Student(String n, int c, int d, int m)
{ name = n; cpr = c; id = d; major = m; }

(b)	 public Student(String n, int c, int d, int m)
{ person.name = n; person.cpr = c; id = d; major = m; }

(c)	 public Student(String n, int c, int d, int m)
{ person = new Person(n, c); id = d; major = m; }

(d)	 public Student(String n, int c, int d, int m)
{ super.name = n; super.cpr = c; id = d; major = m; }

21

Question (2):
Assume you are given a class called Tyre that has two attributes type and size of type String.
There is another class called Car that has three attributes name of type String, num of type
integer and t of type Tyre, the constructor of class Car can be written as:

(a)	 public Car(String t, String s)
 { name = “Unknown”;
 num = “Unknown”;
 type = t;
 size = s;}

(b)	 public Car(String n, int no, String t1, String s)
 { name = n;
 num = no;
 t = new Tyre (t1,s);}

(c)	 public Car(String n, int no, Tyre tyre)
 { name = n;
 num = no;
 t.type = tyre.type;
 t.num = tyre.num;}

(d)	 public Car(String n, int no)
 { name = n;
 num = no;
 type = “Unknown”;
 size = “Unassigned”;}

22

(3)
Abstract Classes

As abstract class will only allow me to create an object from the derived class.

Syntax of Abstract class:

public abstract class className //OR abstract public
{
 // data field declarations
 // actual methods
 // abstract methods

public abstract dataType methodName (Parameter List);

}

Notes:

•	 Abstract class in java can’t be instantiated.

•	 Use abstract keyword to create an abstract method.

•	 An abstract method doesn’t have body.

•	 If a class have abstract methods, then the class should also be abstract or interface.

•	 It’s not necessary for an abstract class to have an abstract method.

Example (1):
(A) Write an abstract class called BankAccount has the following private data fields:
accountNum(long), balance(double), name(String)

and the following methods:
1.	 Constructor having 3 parameters for all data fields.
2.	 Get methods for all three data fields.
3.	 Method deposit to deposit money in the account and update balance.
4.	 Abstract method withdraw to withdraw money from the account and update balance.
5.	 Abstract method updateBalance to update balance according to parameter.
6.	 toString method to return String equivalent of all data fields.

23

BankAccount Class

public abstract class BankAccount
{
 private long accountNum;
 private double balance;
 private String name;

 public BankAccount(long accountNum, double balance, String name) {
 this.accountNum = accountNum;
 this.balance = balance;
 this.name = name;
 }

 public long getAccountNum() {
 return accountNum;
 }

 public double getBalance() {
 return balance;
 }

 public String getName() {
 return name;
 }

 public void setBalance(double balance) {
 this.balance = balance;
 }

 public void deposit (double amount)
 {
 balance += amount;
 }

 public abstract void withdraw (double amount);

 public abstract void updateBalance (double amount);

 public String toString()
 {
 return (“Account Number : “ + accountNum + “\t\tBalance : “ +
balance + “\t\tName : “ + name);
 }

} //end of class BankAccount

24

B) Write a class called SavingAccount that inherits the properties of abstract class
BankAccount and having the following additional data fields: interestRate(double)
and the following methods:
1.	 Constructor having 4 Parameters for all data fields including that of class BankAccount.
2.	 set and get methods for interestRate.
3.	 Implementation of method withdraw.
4.	 Implementation of method updateBalance.
5.	 toString method to return String equivalent of all data fields.

SavingAccount Class

public class SavingAccount extends BankAccount
{
 private double interestRate;

 public SavingAccount(long accountNum, double balance, String name, dou-
ble interestRate) {
 super(accountNum, balance, name);
 this.interestRate = interestRate;
 }

 public double getInterestRate() {
 return interestRate;
 }

 public void setInterestRate(double interestRate) {
 this.interestRate = interestRate;
 }

 public void withdraw (double amount)
 {
 if (amount <= getBalance())
 	 setBalance(getBalance()-amount);

 else
 System.out.println(“Sorry, you don’t have enough balance”);
 }

 public void updateBalance (double amount)
 {
 setBalance(amount);
 }

25

 public String toString()
 {
 return (super.toString() + “\t\t Interest Rate : “ + interestRate);
 }

}//end of class SavingAccount

C) Write a class called Test having only main method to test all functionalities of the methods.

Test Class

 public class Test
{
 public static void main(String[] args) {
 SavingAccount c1 = new SavingAccount(200112,200,”Marim”,5);
 c1.updateBalance(500);
 System.out.println(c1.toString());
 c1.withdraw(50);
 c1.deposit(530);
 System.out.println(c1.toString());
 c1.withdraw(1000);

 }
}//end of class Test

Output
Account Number : 200112	 Balance : 500.0	 Name : Marim	 Interest Rate : 5.0
Account Number : 200112	 Balance : 980.0	 Name : Marim	 Interest Rate : 5.0
Sorry, you don’t have enough balance

26

Questions from previous exams

Question (1):
Assume Furniture is an abstract class having an abstract method called calculatePrice, The
method can be written correctly within the Furniture class as follows: (Note that {......} means
there is some code inside the curly parenthesis).

(A) public abstract double calculatePrice();

(B) public double abstract calculatePrice();

(C) public double calculatePrice() {......}

(D) public double abstract calculatePrice() {......}

Question (2):
Assume are given one abstract super class called Forest, and you have a sub-class
(derived class) called Jungle that inherits the properties of class Forest. Abstract method called
nature() is declared in class Forest and class Jungle has an implementation of the abstract method
nature() given in the Forest abstract class.

Which of the following is correct implementation of method method nature().

(A) public abstract void nature() {......}

(B) public void abstract nature () {......}

(C) public void nature () {......}

(D) all are correct.

27

Question (3):
Consider the following class definition:
public abstract class Employee
{
 private String name;
 private long cprNum;
 private String position;
 public Employee(){
 this(“Unknown”, 0, “Unknown”);
 }
 public Employee(String eName, long code, String pos){
 setName(eName);
 setCprNum(code);
 setPosition(pos);
 }
 public void setName(String eName){
 name = eName;
 }
 public boolean setCprNum(long code){
 if (code > 0 && code < 1000000000){
 cprNum = code;
 return true; }
 else{
 System.out.println(“Invalid CPR, initializing it to 0”);
 cprNum = 0;
 return false;
 }
 }
 public void setPosition(String pos){
 position = pos;}

 public String getName(){
 return name;}

 public long getCprNum(){
 return cprNum;}

 public String getPosition(){
 return position;}

 public abstract double salary(); // abstract method

 public String toString(){
 return(“Name: “ + name + “\tCPR: “ + cprNum + “\tPosition: “ +
 position);
 }
} // end of class Employee

28

Write a class called FullTimeEmployee, which inherits the properties of class Employee. This
new class has the following additional data fields (private):
basicSalary(double), allowances(double), deductions(double).

and the following methods:

•	 Default constructor (without parameters)

•	 Constructor with 6 parameters for name, cpr, position, basicSalary, allowances, and

deductions.

•	 set and get methods for all three data members separately.

•	 Implementation of abstract method salary that returns the salary as:

 basicSalary + allowances – deductions

•	 toString method to return String equivalent of all attributes (including that of Employee).

public class FullTimeEmployee extends Employee {
 private double basicSalary;
 private double allowances;
 private double deduction;

 public FullTimeEmployee() {
 this(“Unknown”, 0, “Unknown”, 0, 0, 0);
 }

public FullTimeEmployee(String eName, long code, String pos, double b,
 double a, double d) {
 super(eName, code, pos);
 setBasic(b);
 setAllowance(a);
 setDeduction(d);
 }

 public void setBasic(double b) {
 basicSalary = b;}

 public void setAllowance(double a) {
 allowances = a;}

 public void setDeduction(double d) {
 deduction = d;}

 public double getBasic() {
 return basicSalary;}

29

	 public double getAllowance() {
 return allowances;}

 public double getDeduction() {
 return deduction;}

 public double salary() {
 return (basicSalary + allowances - deduction);}

// for including the net salary is not in the question
 public String toString() {
 return (super.toString() + “\tBasic Salary: “ + basicSalary + “\
tAllowances: “ + allowances + “\tdeduction: “ + deduction + “\tNet Salary:
“ + salary());
 }

}

30

(4)
Interfaces

It is a collection of abstract methods with empty bodies, An interface is different from a class in
Several ways:

•	 An interface does not contain any constructors.
•	 All of the methods in an interface are abstract.
•	 An interface cannot contain instance fields, The only fields that can appear in interface must

be declared both static and final.
•	 An interface is not extend by a class, it is implemented by a class.
•	 The class can implemant multiple interface.

Syntax of interface:

public interface interfaceName
{
 // constant declarations
 // abstract methed declarations
}

classA classB

classC
wrong, is not valid in java

 we can use inerface

public class classA { ... }
public class classB { ... }
public class classC extends classA , classB { ... }

31

Example (1):

interface Name
setName(String n)

interface ID
setID (long i), print()

class NameID

This class must be implement for
all the methods in the both interfaces

(A) Write an interface called Name having an abstract method SetName.
public interface Name
{
 public abstract void setName(String n);
}

(B) Write an interface called ID having an abstract methods setID and print.

public interface ID
{
 public abstract void setId(long i);
 public abstract void print();
}

(C) Write a class NameId that implements all the abstract methods of the both interfaces defined
in part (A) and (B), The class having the following data fields (private):
name (String), id (long).

public class NameId implements Name,ID
{
 private String name ;
 private long id ;

 public void setName(String n) { name = n;}
 public void setId(long i) { id = i; }

 public void print(){
 System.out.println (“Name: “ + name +”\t\tID: “ + id); }

} //end of class NameId

32

(D) Write a Java application called Check having only main method to test your class NameId.
Create an object x of type NameID having the following values of data fields:
name = Yousif,
id = 991054301

public class Check {

 public static void main (String[]args)
 {
 NameId x = new NameId ();

 x.setName(“Yousif”);
 x.setId(991054301);
 x.print();
 }
} //end of class Check

Output
Name: Yousif		 ID: 991054301

Example (2):
 (A) Write an interface called Vehicle having following abstract methods:
•	 getSittingCapacity: to return sitting capacity,
•	 getManufacturer: to return the manufacturer
•	 getPrice: to return price
•	 age: to return 2020 – yearModel // age of vehicle
•	 getColor: return color
•	 toString: to return String representation of all data fields.

public interface Vehicle {
 public abstract int getSittingCapacity ();

 public abstract String getManufacturer ();

 public abstract double getPrice ();

 public abstract int age ();

 public abstract String getColor ();

 public abstract String toString ();

}//end of inteface Vehicle

33

(B) Write a class Car that implements all the abstract methods of the interface Vehicle defined in
part (A) and having the following data fields:
sittingCapacity (int), manufacturer (String), price (double), yearModel (int), color (String).

public class Car implements Vehicle {
 private int sittingCapacity;
 private String manufacturer;
 private double price;
 private int yearModel;
 private String color;

 public Car(int sittingCapacity, String manufacturer, double price, int
yearModel, String color) {
 this.sittingCapacity = sittingCapacity;
 this.manufacturer = manufacturer;
 this.price = price;
 this.yearModel = yearModel;
 this.color = color;
 }

 public int getSittingCapacity ()
 {
 return sittingCapacity;
 }

 public String getManufacturer (){
 return manufacturer;
 }

 public double getPrice () {
 return price;
 }

 public int age (){
 return 2020-yearModel;
 }

 public String getColor ()
 {
 return color;}

 public String toString () {
 return (“SittingCapacity: “ + sittingCapacity + “\nManufacturer: “
+ manufacturer + “\nprice: “ + price +
 “\nYear Model: “ + yearModel + “\nColor: “ + color);}
} //end of class Car

34

(C) Write a Java application called CarExample having only main method to test your class Car.
Create an object myCar of type Car having following values of data fields:
sittingCapacity = 5; manufacturer = “BMW”; price = 15400; yearModel = 2016; color = “Red”;

public class CarExample {
public static void main(String[] args) {
 Car mycar = new Car(5,”BMW”,15400,2016,”Red”);
 System.out.println(mycar.toString());
 System.out.println(mycar.age());
 }
}

Output
SittingCapacity: 5
Manufacturer:BMW
price: 15400.0
Year Model: 2016
Color: Red
4

35

Questions from previous exams

Question (1):

Assume that ActionListener is an interface. We want to write a class called ButtonHandler that
implements the interface ActionListener. Which of the following is the correct heading of class
ButtonHandler:

(a) public class ButtonHandler extends ActionListener

(b) public class ButtonHandler implements ActionListener

(c) public class ButtonHandler interface ActionListener

(d) public class ButtonHandler abstract ActionListener

Question (2):
Assume that Employee is an interface and RegularEmployee is an actual class (concrete class)
that implements the interface Employee.

Which of the following is NOT a valid statement:
(a)	 Employee e1 = new Employee(Ali, 15012);

(b)	 Employee e2 = new RegularEmployee(Ali, 15012, 1050);

(c)	 RegularEmployee e3 = new RegularEmployee(Ali, 15012, 1050);

(d)	 Employee e4;

