

University of Bahrain

Quality Assurance and Accreditation Center

Course Syllabus Form ITCE112 -250 1. Course code: 2. Course title: Digital Design I 3. <u>College</u>: Information Technology 4. Department: Computer Engineering 5. Program: BSc. In Computer Engineering 6. <u>Course credits</u>: 3-2-3 7. Course NQF Level: 5 8. NOF Credits: 124 9. Prerequisite: ITCE101 10. Lectures Timing & Location: MW 9:30 - 10:45, S40 - 1085 M 11:00 – 12:40, S40 - 1083 11. Course web page: http://blackboard.uob.edu.bh/ MS Teams 12. Course Instructor: Dr. Jalal Khlaifat, jkhlaifat@uob.edu.bh 13. Office Hours and Location: UTH 10 am, S40-1109 14. Course coordinator: Dr. Jalal Khlaifat 15. Academic year: 2023-2024 16. Semester: $\sqrt{}$ First Second Summer 17. Textbook(s): Floyd, T.L. (2014). *Digital Fundamentals*. 11th ed. Pearson Prentice Hall **18. References:** Morris, M. and Michael C. (2013). Digital Design. 5th ed. Pearson Prentice Hall. Charles H. and Roth, Jr. (2014). Fundamentals of Logic Design. International ed. Cengage Learning 19. Other learning resources used (e.g. e-Learning, field visits, periodicals, software, etc.): Blackboard: http://blackboard.uob.edu.bh Software with the book's CD and Circuit Cloud Simulator at http://circuits-cloud.com 20. Course description (as published): This course covers the fundamental of digital logic and design. Topics include: number systems; Binary codes, logic gates, Boolean algebra, simplification of logic functions: Karnaugh maps, combinational logic circuits (adders, decoders, encoders, multiplexer, etc.). Analysis and design of sequential circuits: latches, Flip-Flops, counters, registers. Design of state machines (Mealy, Moore). The laboratory experiments will provide students with hands-on experience of designing, implementing, testing, and simulating digital logic circuits. University of Bahrain – Quality Assurance& Accreditation Center - Course Syllabus Form 1

University of Bahrain – Quality Assurance& Accreditation Center - Course Syllabus Form
Note: Additional information could be added as required by the Instructor, (eg,
Policies)
Note: Items shown <u>underlined</u> cannot be changed without the department consent.

QF-20-rev.a.4

21. <u>Course Intended Learning Outcomes (CILOs):</u>										
		Mapping to PILOs								
	CILOs	1	2	3	4	5	6	7		
1.	Apply knowledge of number systems, codes, and Boolean Algebra to analyze and design logic circuit.	~					~			
2.	Design a combinational logic system from a given specification with logic gates and devices such as MUX, Decoders, or ROMs.	✓	✓				~			
3.	Design and analyze sequential circuit with Flip Flops and tracing timing diagram	~	~				~			
4.	Implement real digital systems, write proper lab report, function on multi- disciplines teams through digital lab experiments.					✓	✓			

22. Course assessment:						
Assessment Type	Details/ Explanation of Assessment in relation to CILOs	Number	Weight	Date(s)		
Quizzes	1-3	2	20 %	TBA		
Examinations	1-3	1	20 %	TBA		
Laboratory/Practical	1-4	6	20 %	Table 24		
Assignments			-			
Projects/Case Studies						
Final Examination 1-3		1	40 %	9 June 2024 @8:30		
Total			100%			

23. Description of Topics Covered							
<i>Topic Title (e.g. chapter/experiment title)</i>	Description						
Number systems, conversion, and Binary codes	Introduction to number systems (Binary, Octal, Decimal, Hexa-Decimal), number systems conversion, Binary arithmetic, Representation of negative numbers, 2's complement arithmetic, binary codes						
Logic gates and Boolean algebra	Describe the basic logic gates and how to combine gates to construct circuits. Boolean algebra theorems, algebraic manipulations, complements of functions, K-map, and multi-level circuits including NAND only and NOR only circuits						
Combinational circuits	Adders, subtractors, decoders, and multiplexers. Implementation of Boolean functions using decoders and multiplexers.						
Sequential circuits	Introduction to Latches and flipflops. Flip-flop conversion, Timing diagram tracing. Design of sequential circuits such as counters and registers. Introducing state machines: Moore and Mealy state machines. Design of state machine.						

24. V	Veekly Sch	edule			
Week	Date	Topics covered	CILOs	Teaching Method	Assessment
1	11-15 Feb	Introduction	1		
2	18 – 22 Feb	number systems, conversions and Binary arithmetic. Representations of negative numbers, 1's Complement, 2's complement arithmetic, BCD, binary codes.	1,2	Exp 1	
3	25– 29 Feb	Logic gates, Boolean algebra, basic operations.	1,2,3		
4	3 – 7 Mar	Boolean algebra theorems, algebraic manipulations, complements of functions.	1,2,3	Exp 2	
5	10 – 14 Mar	Karnaugh maps, Minimization with K-Maps, don't care conditions.	1,2,3		
6	17 – 21 Mar	Multi-level realization, NAND and NOR implementations.	1,2,3	Exp 3	
7	24 – 28 Mar	Combinational logic design, MSI Circuits: binary adders, Magnitude comparators, decoders, encoders	4		
8	31 Mar – 4 Apr	Mid-Semester Break			
9	7 – 11 Apr	Multiplexers, de-multiplexers, code converters, parity generators.	3,4	Exp 4	
10	14 – 18 Apr	Implementation of Boolean functions using decoders and multiplexers.	3,4		
11	21 – 25 Apr	Latches, Flip flops (SR, D, JK and T)	2,3,4	Exp 5	
12	28 Apr – 2 May	Flip flop conversion and Timing Diagrams	2,3,4		
13	5 – 9 May	Counters design	2,3,4		
14	12 – 16 May	Shift registers, State machine	2,3,4	Exp 6	
15	19 – 23 May	Design of state machine circuits	2,3,4		
16	26 – 28 May	Revision	2,3,4		

Academic Integrity Statement

Honesty and integrity are integral components of the academic process. Students are expected to be honest and ethical at all times in their pursuit of academic goals in accordance with the Regulations of Professional Conduct Violations for University of Bahrain Students, the UOB Plagiarism Policy and the UOB Guide to Students Rights and Duties. Any breach of academic integrity will be dealt according to the University Regulations for Professional Conduct Violations.

Prepared by: Dr. Hessa Al-Junaid, Dr. Amal AbuHassan, Dr. Wael El madany Date: 19 Feb 2018